I need to implement makeMatches method in stable marriage class. Code needs to follow this algorithm:
Gale Shapley Java Program Pdf The Stable Marriage ProblemThe Stable Marriage problem is a classical combinatorial problemthat belongs to the family of stable matching problems. An instanceof the Stable Marriage problem involves n men and n women,and each person ranks all members of the opposite sex in strictorder of preference. Gale and Shapley showed that every instance I of HR admits at least one stable matching. Their proof of this result is constructive, i.e., an algorithm for finding a stable matching in I is described. This algorithm has become known as the Gale/Shapley algorithm. An extended version of the Gale/Shapley algorithm for HR is shown in Figure 1.
Download torrent poison ivy 2 lily. Feb 02, 1996 Poison Ivy II torrents - Lily is a sheltered art student from Michigan going to school in California. She finds an apartment and her roommates aren't quite normal. One day she finds a box of items belonging to a. Download Poison Ivy 2: Lily 1996 torrent YIFY full movie or via magnet. A young and naive college art student becomes obsessed with assuming the identity and personality of a departed coed who used to live in her room, and in so doing causes complications that result in two men, a student and her art professor, lusting after her.
However I can not find my error. The program makes couples depend on their first choices but after that doesn't continue and set couples.Could you look at my code and tell me what is wrong with it?
Person.java is provided from instructor:
The Gale–Shapley algorithm. By Gale and Shapley, in which the stable marriage problem was. Free application programming interface for the Gale–Shapley. In Gale-Shapley algorithm. The Gale-Shapley Algorithm is an important part of Java. Pseudo code of the Algorithm. A JAVA Program for the Gale-Shapley Algorithm Dr. Evered And William May Department of Mathematics Iona College 1 A JAVA Program for the Gale-Shapley Algorithm The Gale-Shapley algorithm was developed. Gale-Shapley stable matching algorithm implemented in Java.
And StablaMarriage.java is the one I need to implement code in.
rgettmanBrowse other questions tagged javaliststable-marriage or ask your own question.
In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem or SMP) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a mapping from the elements of one set to the elements of the other set. A matching is not stable if:
- There is an element A of the first matched set which prefers some given element B of the second matched set over the element to which A is already matched, and
- B also prefers A over the element to which B is already matched.
In other words, a matching is stable when there does not exist any match (A, B) which both prefer each other to their current partner under the matching.
The stable marriage problem has been stated as follows:
Given n men and n women, where each person has ranked all members of the opposite sex in order of preference, marry the men and women together such that there are no two people of opposite sex who would both rather have each other than their current partners. When there are no such pairs of people, the set of marriages is deemed stable.
The bundle also includes a suite of three different software solutions that back up your data and protects your computer, and at an affordable 30 cents per gigabyte, we're happy to endorse the Iomega eGo Portable once again. The Good Inexpensive; faster throughput than the competition; rugged enclosure protects drops up to 51 inches; lightweight; three-year warranty. The Bottom Line The eGo Portable continues Iomega's tradition of slim, feature-rich external hard drives, this time sporting a sleek new design and an extended warranty. Iomega quikprotect software. The Bad Power cord not included. Visit for details.
Note that the existence of two classes that need to be paired with each other (men and women in this example), distinguishes this problem from the stable roommates problem.
- 11References
Applications[edit]
Java Program To Find Prime Numbers
Algorithms for finding solutions to the stable marriage problem have applications in a variety of real-world situations, perhaps the best known of these being in the assignment of graduating medical students to their first hospital appointments.[1] In 2012, The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel was awarded to Lloyd S. Shapley and Alvin E. Roth 'for the theory of stable allocations and the practice of market design.'[2]
An important and large-scale application of stable marriage is in assigning users to servers in a large distributed Internet service.[3] Billions of users access web pages, videos, and other services on the Internet, requiring each user to be matched to one of (potentially) hundreds of thousands of servers around the world that offer that service. A user prefers servers that are proximal enough to provide a faster response time for the requested service, resulting in a (partial) preferential ordering of the servers for each user. Each server prefers to serve users that it can with a lower cost, resulting in a (partial) preferential ordering of users for each server. Content delivery networks that distribute much of the world's content and services solve this large and complex stable marriage problem between users and servers every tens of seconds to enable billions of users to be matched up with their respective servers that can provide the requested web pages, videos, or other services.[3]
Solution[edit]
Cached
In 1962, David Gale and Lloyd Shapley proved that, for any equal number of men and women, it is always possible to solve the SMP and make all marriages stable. They presented an algorithm to do so.[4][5]
The Gale–Shapley algorithm (also known as the Deferred Acceptance algorithm) involves a number of 'rounds' (or 'iterations'):
- In the first round, first a) each unengaged man proposes to the woman he prefers most, and then b) each woman replies 'maybe' to her suitor she most prefers and 'no' to all other suitors. She is then provisionally 'engaged' to the suitor she most prefers so far, and that suitor is likewise provisionally engaged to her.
- In each subsequent round, first a) each unengaged man proposes to the most-preferred woman to whom he has not yet proposed (regardless of whether the woman is already engaged), and then b) each woman replies 'maybe' if she is currently not engaged or if she prefers this man over her current provisional partner (in this case, she rejects her current provisional partner who becomes unengaged). The provisional nature of engagements preserves the right of an already-engaged woman to 'trade up' (and, in the process, to 'jilt' her until-then partner).
- This process is repeated until everyone is engaged.
The runtime complexity of this algorithm is where is the number of men or women.[6]
This algorithm guarantees that:
- Everyone gets married
- At the end, there cannot be a man and a woman both unengaged, as he must have proposed to her at some point (since a man will eventually propose to everyone, if necessary) and, being proposed to, she would necessarily be engaged (to someone) thereafter.
- The marriages are stable
- Let Alice and Bob both be engaged, but not to each other. Upon completion of the algorithm, it is not possible for both Alice and Bob to prefer each other over their current partners. If Bob prefers Alice to his current partner, he must have proposed to Alice before he proposed to his current partner. If Alice accepted his proposal, yet is not married to him at the end, she must have dumped him for someone she likes more, and therefore doesn't like Bob more than her current partner. If Alice rejected his proposal, she was already with someone she liked more than Bob.
Algorithm[edit]
Different stable matchings[edit]
In general, there may be many different stable matchings. For example, suppose there are three men (A,B,C) and three women (X,Y,Z) which have preferences of:
- A: YXZ B: ZYX C: XZY
- X: BAC Y: CBA Z: ACB
There are three stable solutions to this matching arrangement:
- men get their first choice and women their third - (AY, BZ, CX);
- all participants get their second choice - (AX, BY, CZ);
- women get their first choice and men their third - (AZ, BX, CY).
All three are stable, because instability requires one of the participants to be happier with an alternative match. Giving one group their first choices ensures that the matches are stable because they would be unhappy with any other proposed match. Giving everyone their second choice ensures that any other match would be disliked by one of the parties.
Optimality of the solution[edit]
The existence of different stable matchings raises the question: which matching is returned by the Gale-Shapley algorithm? Is it the matching better for men, for women, or the intermediate one? In the above example, the algorithm converges in a single round on the men-optimal solution because each woman receives exactly one proposal, and therefore selects that proposal as her best choice, ensuring that each man has an accepted offer, ending the match.
This is a general fact: the Gale-Shapley algorithm in which men propose to women always yields a stable matching that is the best for all men among all stable matchings. Similarly, if the women propose then the resulting matching is the best for all women among all stable matchings.
To see this, consider the illustration at the right. Let A be the matching generated by the men-proposing algorithm, and B an alternative stable matching that is better for at least one man, say m0. Suppose m0 is matched in B to a woman w1, which he prefers to his match in A. This means that in A, m0 has visited w1, but she rejected him (this is denoted by the green arrow from m0 to w1). w1 rejected him in favor of some man that she prefers, say m2. So in B, w1 is matched to m0 but 'yearns' (wants but unmatched) to m2 (this is denoted by the red arrow from w1 to m2).
Since B is a stable matching, m2 must be matched in B to some woman he prefers to w1, say w3. This means that in A, m2 has visited w3 before arriving at w1, which means that w3 has rejected him. By similar considerations, and since the graph is finite, we must eventually have a directed cycle in which each man was rejected in A by the next woman in the cycle, who rejected him in favor of the next man in the cycle. But this is impossible since such 'cycle of rejections' cannot start anywhere: suppose by contradiction that it starts at e.g. m0 - the first man rejected by his adjacent woman (w1). By assumption, this rejection happens only after m2 comes to w1. But this can happen only after w3 rejects m2 - contradiction to m0 being the first.
Strategic considerations[edit]
Gale Shapley Java Program
The GS algorithm is a truthful mechanism from the point of view of men (the proposing side). I.e, no man can get a better matching for himself by misrepresenting his preferences. Moreover, the GS algorithm is even group-strategy proof for men, i.e., no coalition of men can coordinate a misrepresentation of their preferences such that all men in the coalition are strictly better-off.[7] However, it is possible for some coalition to misrepresent their preferences such that some men are better-off and the other men retain the same partner.[8]
The GS algorithm is non-truthful for the women (the reviewing side): each woman may be able to misrepresent her preferences and get a better match.
Counting the stable matchings[edit]
In a uniformly-random instance of the stable marriage problem with n men and n women, the average number of stable matchings is asymptotically .[9]
The maximum grows at least exponentially with n, and counting the number of stable matchings in a given instance is ♯P-complete.[10]
Implementation in software packages[edit]
- R: The Gale–Shapley algorithm (also referred to as deferred-acceptance algorithm) for the stable marriage and the hospitals/residents problem is available as part of the
matchingMarkets
[11][12] andmatchingR
[13] packages. - API: The MatchingTools API provides a free application programming interface for the Gale–Shapley algorithm.[14]
- Python: The Gale–Shapley algorithm is included along with several others for generalized matching problems in the
QuantEcon/MatchingMarkets.py
package[15] - Matlab: The Gale–Shapley algorithm is implemented in the
assign2DStable
function that is part of the United States Naval Research Laboratory's free Tracker Component Library.[16]
Similar problems[edit]
In stable matching with indifference, some men might be indifferent between two or more women and vice versa.
The stable roommates problem is similar to the stable marriage problem, but differs in that all participants belong to a single pool (instead of being divided into equal numbers of 'men' and 'women').
The hospitals/residents problem – also known as the college admissions problem – differs from the stable marriage problem in that a hospital can take multiple residents, or a college can take an incoming class of more than one student. Algorithms to solve the hospitals/residents problem can be hospital-oriented (as the NRMP was before 1995)[17] or resident-oriented. This problem was solved, with an algorithm, in the same original paper by Gale and Shapley, in which the stable marriage problem was solved.[18]
The hospitals/residents problem with couples allows the set of residents to include couples who must be assigned together, either to the same hospital or to a specific pair of hospitals chosen by the couple (e.g., a married couple want to ensure that they will stay together and not be stuck in programs that are far away from each other). The addition of couples to the hospitals/residents problem renders the problem NP-complete.[19]
The assignment problem seeks to find a matching in a weighted bipartite graph that has maximum weight. Maximum weighted matchings do not have to be stable, but in some applications a maximum weighted matching is better than a stable one.
The matching with contracts problem is a generalization of matching problem, in which participants can be matched with different terms of contracts.[20] An important special case of contracts is matching with flexible wages.[21]
See also[edit]
- Matching (graph theory) - matching between different vertices of the graph; usually unrelated to preference-ordering.
- Envy-free matching - a relaxation of stable matching for many-to-one matching problems
- Rural hospitals theorem - a theorem comparing different stable matchings for the same problem.
- Rainbow matching for edge colored graphs
Java - Gale-Shapley Algorithm - Stack Overflow
References[edit]
- ^Stable Matching Algorithms
- ^'The Prize in Economic Sciences 2012'. Nobelprize.org. Retrieved 2013-09-09.
- ^ abBruce Maggs and Ramesh Sitaraman (2015). 'Algorithmic nuggets in content delivery'(PDF). ACM SIGCOMM Computer Communication Review. 45 (3).
- ^Gale, D.; Shapley, L. S. (1962). 'College Admissions and the Stability of Marriage'. American Mathematical Monthly. 69 (1): 9–14. doi:10.2307/2312726. JSTOR2312726.
- ^Harry Mairson: 'The Stable Marriage Problem', The Brandeis Review 12, 1992 (online).
- ^Iwama, Kazuo; Miyazaki, Shuichi (2008). 'A Survey of the Stable Marriage Problem and Its Variants'. International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008): 131–136. doi:10.1109/ICKS.2008.7. hdl:2433/226940. ISBN978-0-7695-3128-1.
- ^Dubins, L. E.; Freedman, D. A. (1981-08-01). 'Machiavelli and the Gale-Shapley Algorithm'. The American Mathematical Monthly. 88 (7): 485–494. doi:10.1080/00029890.1981.11995301. ISSN0002-9890.
- ^Huang, Chien-Chung (2006). Azar, Yossi; Erlebach, Thomas (eds.). 'Cheating by Men in the Gale-Shapley Stable Matching Algorithm'. Algorithms – ESA 2006. Lecture Notes in Computer Science. Springer Berlin Heidelberg. 4168: 418–431. doi:10.1007/11841036_39. ISBN9783540388760.
- ^'SIAM (Society for Industrial and Applied Mathematics)'. doi:10.1137/0402048.Cite journal requires
journal=
(help) - ^'SIAM (Society for Industrial and Applied Mathematics)'. doi:10.1137/0215048.Cite journal requires
journal=
(help) - ^Klein, T. (2015). 'Analysis of Stable Matchings in R: Package matchingMarkets'(PDF). Vignette to R Package MatchingMarkets.
- ^'matchingMarkets: Analysis of Stable Matchings'. R Project.
- ^'matchingR: Matching Algorithms in R and C++'. R Project.
- ^'MatchingTools API'.
- ^'matchingMarkets.py'. Python package.
- ^'Tracker Component Library'. Matlab Repository. Retrieved January 5, 2019.
- ^Robinson, Sara (April 2003). 'Are Medical Students Meeting Their (Best Possible) Match?'(PDF). SIAM News (3): 36. Retrieved 2 January 2018.
- ^Gale, D.; Shapley, L. S. (1962). 'College Admissions and the Stability of Marriage'. American Mathematical Monthly. 69 (1): 9–14. doi:10.2307/2312726. JSTOR2312726.
- ^Gusfield, D.; Irving, R. W. (1989). The Stable Marriage Problem: Structure and Algorithms. MIT Press. p. 54. ISBN0-262-07118-5.
- ^Hatfield, John William; Milgrom, Paul (2005). 'Matching with Contracts'. American Economic Review. 95 (4): 913–935. doi:10.1257/0002828054825466. JSTOR4132699.
- ^Crawford, Vincent; Knoer, Elsie Marie (1981). 'Job Matching with Heterogeneous Firms and Workers'. Econometrica. 49 (2): 437–450. doi:10.2307/1913320. JSTOR1913320.
Textbooks and other important references not cited in the text[edit]
Simple Java Program
- Dubins, L.; Freedman, D. (1981). 'Machiavelli and the Gale–Shapley algorithm'. American Mathematical Monthly. 88 (7): 485–494. doi:10.2307/2321753. JSTOR2321753.
- Kleinberg, J., and Tardos, E. (2005) Algorithm Design, Chapter 1, pp 1–12. See companion website for the Text [1].
- Knuth, D. E. (1976). Mariages stables. Montreal: Les Presses de l'Universite de Montreal.
- Knuth, D.E. (1996) Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms, English translation, (CRM Proceedings and Lecture Notes), American Mathematical Society.
- Pittel, B. (1992). 'On likely solutions of a stable marriage problem', The Annals of Applied Probability 2; 358-401.
- Roth, A. E. (1984). 'The evolution of the labor market for medical interns and residents: A case study in game theory', Journal of Political Economy 92: 991–1016.
- Roth, A. E., and Sotomayor, M. A. O. (1990) Two-sided matching: A study in game-theoretic modeling and analysisCambridge University Press.
- Shoham, Yoav; Leyton-Brown, Kevin (2009). Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. New York: Cambridge University Press. ISBN978-0-521-89943-7. See Section 10.6.4; downloadable free online.
- Schummer, J.; Vohra, R. V. (2007). 'Mechanism design without money'(PDF). In Nisan, Noam; Roughgarden, Tim; Tardos, Eva; Vazirani, Vijay (eds.). Algorithmic Game Theory. pp. 255–262. ISBN978-0521872829..
External links[edit]
Problem Description In this problem we will consider a version of the problem for professors and students and their fully ordered list of preferences. Please read through this document and the documentation in the starter code thoroughly before beginning The Stable Matching Problem, as discussed in the text, assumes that all men and women have a fully ordered list of preferences.
In this problem we will consider a version of the problem for professors and students and their fully ordered list of preferences. Note that ties in preference lists are not allowed. As before we have a set P of n professors and a set S of n students. Assume each professor and each student ranks the members of the opposite group.
Gale Shapley Java Program - Cleverblast
Part 1: Implement a Brute Force Solution [30 points A brute force solution to this problem involves generating all possible permutations of men and women, and checking whether each one is a stable matching, until a stable matching is found. For this assignment, you are provided with Preferences.java class which includes the necessarry input structures for the problem. Please see the comments in Preferences.java file for details.
You are also given Assignment1.java file where you will put your implementation for this part under stableMatchBruteForce) function which returns ArrayList. This ArrayList should contain information for matching information representing the index of student matched with a professor, -1 is not matched. For example, if ith element of the returned ArrayList is j, than professor i is matched with student j. There might be a stable matching which is neither professor nor student optimal. This is because in a brute force, you are trying to find all possible stable matches.
Gale Shapley Java Programming
Part 2: Implement Gale-Shapley Algorithm [40 points In order to solve this matching problem more efficiently, you need to implement Gale-Shapley Al gorithm and give a solution for Professors Optimal Matching. For implementation, we provide you with again with Preferences.java and you will put your implementation to Assignment1.java file under stableMatchGaleShapley). This algorithm is discussed in the class, so you can use